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ABSTRACT

In direct-sequence spread-spectrum systems, successful communications require phase

synchronization of the incoming pseudonoise (PN) coded waveform with a locally generated

replica at the receiver. It has been previously shown that sequential PN code acquisition schemes

have the potential to achieve the best performance, but they are the least analyzed because of

the analytical difficulties.

The acquisition time for a PN code acquisition scheme is an important parameter for system

design purposes. This thesis investigates the performance of two acquisition schemes in terms

of the acquisition time. A fixed sample size (FSS) test and a truncated sequential probability

ratio test (TSPRT) are studied with noncoherent demodulation in a classical additive while

Gaussian noise (AWGN) channel and in presence of fading. Optimal selection of desired

detection and false alarm probabilities, the effects of penalty time, majority logic verification

schemes and channel signal to noise ratio (SNR) mismatch problems are thoroughly studied using

the flow graph technique. Our results show that the TSPRT is efficient, robust (against fading),

fast and suitable for real time low cost implementations. e... For.
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I. INTRODUCTION

A. GENERAL

The field of spread-spectrum communications has been around for several decades.

Although almost all the applications prior to the 80's fell in the military domain, recent

band allocation policies [Ref. 1] and commercially available IC components have made

the area appealing to commercial applications as well.

The basic signal characteristics of modern spread-spectrum systems can be defined

as follows [Ref. 2].

1. The carrier is an unpredictable, or pseudorandom, wideband signal.

2. The bandwidth of the carrier is much wider than the bandwidth of the data
modulation.

3. Reception is accomplished by cross correlation of the received wideband signal
with a synchronously generated replica of the wideband carrier.

Spread-spectrum signals provide the following performance attributes [Ref. 3].

1. Low density power-spectra for signal hiding.

2. Interference rejection and anti jam properties.

3. Selective addressing and code division multiple access capability.

4. Message privacy.

5. High resolution and ranging.



Spread-spectrum systems can be classified into [Ref. 4] "direct sequence",

"frequency hopping", "time hopping", "chirp" and "hybrid systems" with respect to the

modulation techniques used in the system.

In direct sequence spread-spectrum systems (DS-SS), spectrum spreading is

accomplished by modulating a data modulated signal a second time using a very

wideband spreading signal. This second modulating wideband signal is chosen to have

properties which facilitate demodulation of the transmitted signal by the intended receiver

and make demodulation by an unintended receiver as difficult as possible. This is best

accomplished by using a signal that appears random to the unintended receivers and that

can be reproduced by deterministic means in the intended receiver. Therefore, this

waveform is usually referred as pseudorandom noise (PN) spreading signal.

In a spread-spectrum system using frequency hopping (FH), the carrier frequency

is varied pseudorandomly with time, whereas a time hopping (TH) system uses

pseudorandom time slots to transmit the signal. Hybrid systems consist of a combination

of two or all three of the DS, FH, TH systems. The chirp spread spectrum method can

be considered as an analog direct spreading method that does not use a PN code.

B. PN CODE SYNCHRONIZATION

Code synchronization is vital for most spread-spectrum systems, since the PN code

is used as a key for spreading and despreading the desired information. Throughout the

development of spread-spectrum systems, it is true that [Ref. 3: pp. 2141:

2



More time, effort and money have been spent developing and improving
synchronizing techniques than in any other area of spread-spectrum systems. There
is no reason to suspect that this will continue to be true in the future.

A complete coverage of the synchronization of spread-spectrum systems can be

found in [Ref. 5]. In this thesis, we restrict ourselves to direct sequence spread-spectrum

systems.

The data is recovered from a DS-SS communication system by neutralizing the

effects of the PN sequence that is used for spreading the signal at the transmitter's site.

This process is termed as despreading. Removing the PN sequence from the incoming

signal is primarily accomplished by multiplying the incoming signal by a locally

generated and phase synchronized replica of the incoming PN sequence. Therefore, a

primary function of the receiver is to align the phase of the local replica with the

incoming signal's PN sequence. The phase is determined by correlating the two PN

sequences. The alignment process is usually accomplished in two stages. The first stage,

called acquisition, brings the PN sequences into coarse alignment, while the second

stage, called tracking, brings the PN sequences into precise alignment.

We study noncoherent acquisition of the direct sequence spread-spectrum signals.

In this context noncoherent refers to the modulating carrier, not the PN sequence.

Although coherent systems are simpler and more widely studied, they are not practical

because code sequence acquisition is usually performed before recovering the modulating

carrier.

Since the acquisition process involves searching through the uncertainty phases of

the PN sequence, acquisition schemes can be classified into parallel, serial, and hybrid

3



schemes with respect to search strategies. The parallel scheme is the fastest search

strategy. A parallel scheme inspects all the uncertainty phases simultaneously and decides

which is the most likely one. Each uncertainty phase is investigated by a path consisting

of a correlator and a matched filter. If the period of the PN sequence is large, the

hardware requirement for such a system is excessive and hence is impractical. On the

other hand, a serial search scheme inspects one uncertainty phase at a time and

determines whether the PN sequences are in alignment. Hardware requirements of such

schemes are small, but the complexity of the control process is high and the decision

process requires a longer time. Various combinations of the serial and parallel search

strategies are also possible.

A serial search acquisition detection scheme that uses a single detector to examine

each of the possible waveform alignments for a fixed period of time until the correct one

has been located, is termed as a single dwell scheme. If the scheme uses cascaded

multiple detectors each having a longer examination period than its predecessor to verify

the synchronization condition, it is called as a multiple dwell scheme. The test terminates

if any of the detectors decides a non-synchronization condition. The synchronization

condition is accepted if all the detectors decide favorably. In this case the examination

time is increased with discrete steps, and since most of the positions will be due to a non-

synchronization condition, it is hoped that they will be detected and rejected in earlier

stages using a shorter time. These schemes both fall into the category of fixed dwell time

or fixed sample size (FSS) schemes. Sequential schemes use a single detector with

multiple thresholds, therefore yielding a variable examination time. It has been shown [Ref. 6]

4



that for a two-hypothesis test of a sampled random variable, the sequential probability

ratio test (SPRT) is optimum in the sense that for a given false alarm (Pi ) and detection

(Pd) probability, it requires minimum average number of samples to produce a decision

if the samples of the random variable are independent and identically distributed (i.i.d.).

Therefore, substantial savings can be achieved on the overall acquisition time using

comparable hardware to realize the system where low-cost, fast and reliable acquisition

schemes are a necessity, especially in mobile applications [Ref. 1].

This thesis is based on the theory developed in [Ref. 7] and [Ref. 8], two papers

which studied the noncoherent sequential acquisition of PN sequences in terms of single

search state basis, and the mean acquisition time respectively. These papers served as the

original motivation and starting point for this research. In this thesis, we also investigate

the variance of the acquisition time, and perform a more detailed acquisition time

analysis on the system parameters.

The rest of the thesis is organized as follows. Chapter II presents the PN code

acquisition system model and derives the equations to calculate the mean and the variance

of the acquisition time using the flow graph technique. Chapter III is devoted to the

acquisition time analysis on a single dwell FSS scheme and a truncated sequential

probability ratio test (TSPRT) scheme over some important design considerations.

Chapter IV examines the performance of both FSS and TSPRT schemes under slowly

varying Ricean fading conditions. Finally, the conclusions are given in Chapter V.

5



U. SYSTEM MODEL AND FLOW GRAPHS

In this chapter, we present the acquisition receiver system model' and derive the

equations to determine the statistics of the acquisition time using the flow-graph technique

developed in [Ref. 9].

A. SYSTEM MODEL

Figure 2.1 depicts a block diagram of the receiver's acquisition system. We assume

that there is no data modulation during the acquisition process. The channel is also

assumed to have additive white Gaussian noise with two-sided power spectral density

N0/2. The input signal at the receiver is

r(t) = Aoa(t+iAT,)cos(wt + 9) + n(t) (2.1)

where A0 is the signal amplitude, a(t) is the m-sequencn; signal waveform with phase iAT,

(i is taken to be an integer without loss of generality), T, is the chip duration, A is the

value determining how much the timing of the local PN generator is updated during the

acquisition process, coo and 0 are the frequency and the phase of the carrier and n(t) is

the additive noise. The local replica of the m-sequence has the form a(t + (0 + y)ATc),

where j is an integer and I-y 1 : 0.5. The received signal r(t) is first despread by

SThis chapter, which presents the model and framework to be used in the subsequent chapters, is based on the
theory developed in [Ref. 71 and [Ref. 8]. The system mode!, equations and design approximations, the flow graph
of the system model and some of the relevant equations derived from the graphs, and the early termination feature
of the coincidence detector were originally propounded in these references. This material is adapted and used with
the permission of the authors.
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Figure 2.1 Block diagram of noncoherent serial acquisition scheme.

multiplying with the local PN waveform and is then noncoherently demodulated. The test

statistics Y,, is used by the decision processor to test if the local and the incoming PN

sequences are aligned to within one chip duration. If not, the local PN sequence phase

is updated by AT, seconds and the process repeats. If coarse alignment is achieved then

i must be equal to j and tracking circuitry takes over to reduce 'Y to zero. Using the

notation in Figure 2.1, after integrating over n chips and ignoring the double frequency

terms, the in phase and quadrature components are given by
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I rt~a(t+(+y)AT~)cos(w~)dt = -T~S~cosO + Nj, 2.2
XTI (2.2)

= J r(t)a(t+(j+y)ATc)sin(w)dt = A°TS.sinO +

respectively, where

= fn(t)a(t+(Q+.y)AT)cos(at)dt,
.•.• (2.3)

T.MNq,. = [ n(t)a(t +Ql"+-)AT,)sin(wt)dt

are independent Gaussian random variables with zero mean and variance o. = nTN0/4.

The expression for S. is

nT,

S.= 4fa(t+iAT¢)a(t+(.+-y)AT,) d. (2.4)

For a fixed n, Xj, and Xq, are independent Gaussian random variables with

variance ar,2 and means (Ao/2)TcS.cosO and (Ao/2)TeS.sinO respectively. Note, however,

that X,,. and X,.. are not independent for n d m, and similarly for Xq,. and Xq,.. The test

statistics for deciding alignment or non alignment is

_y', =x, ÷ x,. (2.5)

The random variable Y. has a non-central Chi-squared probabi;ity density function

(pdf) with two degrees of freedom, given by

8



e .-e.0 (2.6)f7y 20 -M 4( ,), y.>

where X, = [(AO12)T'ScosO]2 + [(Ao/2)TfS,,sinOJ2 = (A2o/4)T•2e,, and Io(.) is the modified

Bessel function of order zero.

Based on the test statistics Y,, the decision processor must decide whether the two

phases are aligned to within AT,/2 of each other,i.e., j = i, or they differ by at least one

chip,i.e., I(i+-y) - iIAT, > T. For simplicity, we let i = 0. Equivalently, the decision

processor has a task of testing the following hypotheses

Ho (non-alignment): • -YI J I and I•-y 1 !5
2 (2.7)

H, (alignment) : j=i=O and I l!-

Since Iy 1 :. 1/2, under the hypothesis Ho we must have I j I > (I/A - 1/2).

Note that it is possible to have (1/2) < I j+-y I < (I/A), which corresponds to neither

Ho nor H,. It falls between Ho and H,.

The parameter X. takes on different values under Ho and H,. We designate X.,0 and

as the worst case values of X. under Ho and H, respectively. Using these worst-case

parameter values, the likelihood ratio for (2.7) can be written as

_ f(y. IH,) X"-X"" ((,, "/aXY"/a") (2.8)A.(yn) = __a _ _ = exp( . 2 (Sfy.(y. IHo 201n lo((X.dob•,(yjob)

We will now derive the nominal worst case values for X., assuming an m-sequence

is used as the PN code sequence of communication system in consideration. Denote the

9



chips of the PN sequence by ct, where k - ... ,-1,0,1,2,..., and ck = ±1. Let N=20-

1 be the period of the m-sequence. The PN waveform is

a(t) = i CJPT(tkTc) (2.9)
k--ft

where PTr(t) is a rectangular pulse of amplitude 1 and width T,. Assuming i = 0, we

obtain an expression for S. from (2.4) and (2.9) as

X-I

EC[(1-IYIA)Ck + (IyIA)ck+,,jAY under H,
4-1I ck[(1-8)ck+, + 8 c+,+IJ under Ho
k-O (2.10)

N1-i

n(l-IYIA) + (IYIA)Eckck,.Y) S,.1
0k-

N-I N-I-l (1-6)Eckck+, + 8Eckck~i,, =- S55o
A-C A-0

where sgn(x) is 1 forx a 0 and -1 forx < 0, 1= Loi+-v)AJ and a=(j+-y)A- L(o+-Y)A&.

Note that I d 0 or -1 and 0: < < 1.

Defining the per-chip signal to noise ratio as

A2 T
S AW 0 (2.11)

we have

10



___ - I (SATR)S,,'J under H, 2.2
- -2 2 e

On !(SWRMS.2 0  under HO

Since the exact values of S., and S.o, are unknown to the receiver in advance, some

nominal worst case values must be used in designing the system. Results from

simulations for m-sequences suggests that modelingCl o under H,, and
k-O

n-I n-I
modeling c kct, and E ctct., , /zn, under Ho yield the desired results. Using these

k-0 k-O

approximations we have

- n(SNR)(1-I I) 2  - -- under!H,
2, 2 (2.13)

0n SNR = - under Ho

These nominal worst case values will be used in the design methods of various

acquisition schemes. The design methods for fixed dwell and sequential schemes will be

discussed in later chapters.

Regardless of the acquisition scheme, some type of verification logic is usually

incorporated in these systems to counter balance the effects of costly false alarms. Here,

we employ a majority logic verification scheme such that in case of a hit, (deciding HI

is true) A or less additional tests are performed before committing a final decision. The

11



initial decision will hold if B (5A) additional tests are favorable; otherwise, it is

overturned and the search continues for the next searching state. We also assume that a

counter is available and the coincidence detector (CD) employs an early termination

mechanism in order to save time. Particularly, the test will be terminated once B

favorable tests are accumulated or when there is no chance that B favorable tests can be

obtained. Figure 2.2 describes the coincidence detection process with early termination

in detail.

B. FLOW GRAPH OF THE ACQUISITION SCHEME

In [Ref. 9], a flow-graph technique was proposed for determining the statistics of

the acquisition time for serial search acquisition schemes. A circular flow-graph was

developed using the markovian nature of the underlying serial search acquisition process.

We will briefly discuss the technique in the following.

The basic idea behind this technique comes from defining each possible relative

position of the phases of the two PN sequences (incoming and local replica) as a state of

a discrete markov process. There will be a finite number of states depending the value

of the A (the parameter which determines how much the phase of the local PN sequence

is advanced after each Ho decision).

Let p,(n) indicate the probability that the Markov process will move from state i

to statej in n steps and let z denote the unit delay operator. The state transition diagram

can be mapped into its equivalent flow graph if each transition branch from i toj in the

Markovian diagram is assigned a gain equal to p(z),where pA A po() is the one-step

12
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Figure 2.2 Coincidence detection with early termination.

transition probability and z represents the unit delay associated with that transition. The

generating function for this transformation is

POWz 1- •, p(n)z n. (2.14)

nxo

Note that if the time delay associated with the transitions is specifically t seconds

z should be changed to zi in the above equation. The importance and usefulness of py(z)

comes from its ability to reveal some statistical information about the underlying process.

Using (2.14) one can see that

13



d (z) I = n p(n) = E{n} (2.15)

and higher order moments can be similarly obtained.

Figures 2.3 and 2.4 show a general and a detailed version of the circular flow-

graph diagram for the system model presented in the previous section. This graph has

a total of ,+2 states. Two of these states are the acquisition state and the false-alarm

state, where the former is absorbing and the latter is not. The remaining i, =N/A states

are searching states, where N is the PN code sequence period and A (taken to be 1/2 for

this system) is the fraction of a chip to be updated each time an Ho decision is made. We

assume that the code tracking loop following the acquisition circuit can successfully track

the incoming code phase if the phase offset is smaller than T, seconds. If we set -y = 1/2,

where yT, is the timing difference between the incoming and the locally generated PN

waveforms when j=i, then a total of four states will correspond to H,(alignment

hypothesis) as shown in Figure 2.4. The number of search states under Ho is a 1,-4 or

namely 2N-4.

The search for the acquisition could start in any of the searching states, regarding

to the initial phase of the incoming PN sequence. Therefore, the initial starting state is

assumed to have some a priori distribution, which reflects the designers confidence about

the initial relative position of the codes.

14
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C. EXPECTED RESULTS

Prior to making a more detailed analysis this section deals with a theoretical best

case situation to reveal the relationships between important parameters for a serial search

acquisition scheme.

Consider the circular flow-graph diagram of Figure 2.3. Let Pd indicate the

probability that the system will reach acquisition while the codes are in any of the H,

states and P. denote the probability of committing an acquisition decision while the codes

are in any Ho states. It is easy to see that P = 1.0 and Pf = 0.0 is the best case for this

system. Let M,, denote the sample size, i.e., the number of chips to be integrated prior

to committing a decision. Since the codes may take any initial relative phase, e.g., as

would be for an arbitrary asynchronous communication scheme, we assume a uniform

initial state prior probability distribution. This system will reach the acquisition state as

soon as a search state under H, is reached and will never circle more than once, so we

expect to see the least possible mean time to acquire with the least variance. It is easy

to see that the only randomness for the system is due to prior starting state probability

distribution and the mean and variance of the acquisition time will heavily depend on this

distribution. The mean time to acquire is

V T 2N-2

P, CcQ = EPA Tiq --. ( (2N-iz)MN+4M=)
5 6 

(2.16)
= TM, (N )

2 N
Mss(NTC) Ms T

where T = NT/ is the data bit period and N is the PN code sequence length.
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Following a similar derivation for the variance and using P*TACQ =M-e'T for

simplicity, we obtain

2* V 7.2 2N-2F pX -p; - M ] -- M
C1 ACQ = XPL(TLCQ-ILACQ) 2 

=- ( [(2N-ONM1 -NM 5 ] + 4(M.0- M9
2N 1-

1M2 (NT1)2  M.2 T2

(2.17)

Note that definite detection and no false alarm assumption is unrealistic and will

not happen in nature. Nevertheless, this simplistic approach provides some important

aspects of the total system.

We can see that we will have an absolute lower bound due to uncertainty of the

phase of the incoming PN sequence. For this lower bound the sample size constitutes a

key parameter, the mean acquisition time will be basicly dependent upon the sample size

and the variance will be proportional to the square of the sample size. In realistic cases

the false alarms and misses will prolong the average acquisition time and increase the

variance. Since the states under Ho largely outnumbers the states under H1, Ho states will

be dominant in mean and variance calculations.

The next logical question to ask is how the actual detection and false alarm

probabilities would effect our performance parameters. The following sections will

provide a more detailed exact analysis for the overall system performance and seek

optimal design parameters.
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D. MEAN AND VARIANCE OF THE ACQUISITION TIME

1. General

The flow-graph diagram depicted in Figure 2.3 provides us a technique of

obtaining first and higher order statistics of the acquisition time. We are interested in

finding the gain function Pq(z), where

P,,q(Z) = EA Piq(z) (2.18)
M21

with Pi.acq(z) denoting the gain function going from state i to the acquisition state ACQ.

We assume a uniform a priori initial phase distribution, i.e., p, = I/v = 1/2N. The

individual gain functions from states can be found as

= (D,_1 +M _,D +M_,.M D1 +M,_1 MM1 D2)(z)

Pý-2,acq(z) -.. MwPIacq(•) •

P4,acq(Z) = M IMIM... *M_ý2P._Iq(z),
P3,.q(Z) = M3M4M5... MP- (z)
P2,acq(Z) =D + M 2P3 ,acq(Z),

P1 ,cq(z) =D + MP. (z).

Note that these functions can be written in various ways since we are dealing

with a circular graph structure. It is possible to write all the other states in terms of any

single one of them. The form presented above expresses all states either explicitly or

implicitly in terms of P,a.incq(z), the state which intuitively has the least expected time to

acquire and is chosen to provide computational simplicity. For the states under H1 , M(z)

18



stands for the miss gain function and D(z) stands for the detection gain function, whereas

M. ..... M, 2(z) denotes the process gain functions for the states under Ho. Next we can

find the individual gain functions as follows:

M,_l(Z)= (1-Pd(v-l))zt'' + Pd0'-l)(1-P(J'V-I)zt'ýý"',

D,_(Z) = Pd(v-I)Pj(V -I)z" " (2.20)

1 - M,1 (z)

where Pd(v-l) is the detection probability and Pd(P-l) is the coincidence detector

detection probability for state v - 1. The time delay t',, is the sum of A or less delay

terms depending on whether an early terminatible coincidence detection scheme is used

or not. In case of early termination feature it can be expressed as

E ' a-i-I (1 -Pd(P-1)I-j-3 (PP(,-1))B(A -J)i._,
- I B-1 (2.21)÷- ( A-B*]j. (I_pdop,_))AB÷,(p,•o,_ I)i(A _B +I +jt.

+ E ABI

This equation can be verified by examining the early-termination coincidence

detection process described in Figure 2.2. Assuming the coincidence tests are statistically

independent, the early termination procedure does not affect the coincidence detection

probability which has a binomial distribution in both cases. It can be written as
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P•(A-l) = ( [I - P _(p-))A--(pd(1- )y. (2.22)
J=B

Note that the individual gain functions for the other H, states can be found

with a simple substitution of the indices. For the remaining of the search states under H,

we can write

M3(z) = NFA3(z) + FA3(z) R3(z) (2.23)

where

NFA3(z) = (1 -P,(3))z" + P,(3)(l-P,(3))z',,

FA3(z) = P,(3)P,(3)z,÷"* = 1 - NFA(z), (2.24)

R3(z) = ZCN1

In the above equations FA3(z) and NFA3z) are the gain functions for the false-

alarm and correct dismissal respectively and R3(z) is the return gain function for state 3,

which specify the penalty time incurred in returning from the FA state. The constant c

is the number of bit intervals elapsed before returning from false alarm state. Again the

gain functions for states 4,5,6,...,,-2 can be found with straightforward substitution of

the indices, whereas the coincidence false alarm probabilities and time delays can be

found from the equations (2.21) and (2.22) by substituting Pd with Pft.

So far all the necessary elements constituting the overall gain function, Pq(z)

are determined. A simple verification of the equations can be obtained by evaluating

Pocq(1), whi-. h equals to unity because the ACQ state is the only absorbing state in this

system.
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Following the steps outlined in [Ref. 9], the mean and the variance of the

acquisition time can be readily obtained by using the formulas

TAQ dP•(z) L 1(.5

YIrcQ = df z -1'
A (2.25)

YTACQ = [ d_2 + -z d-z

2. The Mean Acquisition Time

Now we will carry out some algebra starting from the overall gain function

P.cq(z) of equation (2.19). The following symmetry conditions always hold if complete

random sequences were used. They are also valid for m-sequences with long periods.

Md,(z) A MA(z) = M1(z)
Md2(z) A M,_,(z) = M2(z)
Ddl(z) A D,(z) = Dj(z) (2.26)
Dd2 (z) A D,-1 (z) = D 2(z)
Mjb(z) A M3(z) = M4(z) =...= M_ý2(z)

Notealso, with ACQ being the only absorbing state P,(1) = 1.0, i= 1,...,., and

Mf,(1) = 1.0. Using these results and carrying out the algebra we can write

P3,q(1) ff= (,-4)A4 1(I) +

Pe,.q(1) = D(I) + M 1
2(l) + Md2(1)P3.(1), (2.27)

P1',ncq(1) = Dd1(l) + Md'(1) + Md)(1)P2,cq(1),

P' ,q(1) = D I,(1) + Mdj(1) + Mdj,(1)P.,Iq(1)

where
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M;~l =(1 Pd1)tdl + ' d1( 1 -Pl(d +tdi), (2.28)
D,11(1) = Pd~lpdJd +td'J),

and M',2(1) and Dd2(1) follows with an indices substitution.

The other states under H0 can be similarly found as below,

=(v-i-I)W'(1) + Pv'-,41() , i = 4,5,...'v-2 (2.29)

where

M'(1) t~ P + cNTfP,,P. (2.30)

Finally for the state '- I we can write

P.1-,O) Ddll) _Md2Mdld2)1) DMd)2(1) ( +MdlDdl +Md)2 Md)( 1)I~ac~) I -Md1
2 Md22(1) 1M~ +MIMd2 (l Md 2________

+ dl (Md/Idl 2M ~~()+ ____

1 Md M 2(1)M I+dld )1) +i M J2M 2( 1) .(D41 +Mdj~ d, +Mdl2Dd2)(l)

(1 -Md,2Md21)2~ d t d d2 d

+ (1 Md2() _(2M A 2M Dd+ 2 MdlMd2 3Ddl 2d, Md d
(I-M 2Md2

2( 1))2 dd

+ 2Mdl Md2 Dd2) ('1d) dD 2)

+ Md(v-) _(MdJ2M2 2 Md2D + M d 2A 3 Dd

+ f"P-d 2 d2 dl 2 3

+ Md)3Md2 
3Dal +Mdl4 Md23Dd)(1). (2.31)

After replacing v by 2N, the expression for the mean acquisition time for our

system can be written in the following form
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14TACO pP,1

1_[(2N2 -7N+6)M'(I)+(2N-3)P.,,_,(l)+P,,,,(1) (2.32)

3. The Variance of The Acquisition Time

Equation (2.25) depicts that an expression for the variance can be obtained by

taking the second derivative of P.,9(z). Using the same symmetry conditions shown in

equation (2.26) we can write

p () ((-4 + -4)(-5)()2
+ (2v-8WfýP.,-.• +

P2,(1) = (D42 + M2 + 2M•P,.v + MaP3',)(1), (2.33)

P()= (Di', + M ' + 2Md' 1P2., + MP

P,,•,(l) = (Dd,+ + + 2-M1, P1 ',O. + MlPlv1P)(I),

and for the other states under Ho

"p~l"I + (V -i-1)(,V-i -2)<M')2 (.P (1) = ((,--l)M +(2.34)

+2(v-I-l)M•P• 1,• + PA-1,.q)(1), i = 4,5,...,v2

The gain function P,.,.(z) has the form A(z)/B(z) and can be differentiated

using normal techniques.

' A" (1) 2B (l)P.•_.,(1) _ A(1)B" (1) (2.35)
B(I) B(1) B2(j)

where
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A~)=Dd(Z) + Md2(Z)Dd)(z) + Ma(Z)Md,(Z)Ddj(Z) (2.36)A(Z)'(Z~j2()Ddý)' 2.36)
B(z) = I - md(zw 2(zw P-4(z).

The rest follows with a tedious but simple bookkeeping exercise. The resulting

equations which will be used to calculate the variance of the acquisition time are rather

messy and we do not show them here, but they can be easily put in a computer program

and an acquisition time analysis may follow.
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IMI. ACQUISITION TIME ANALYSIS

A. INTRODUCTION

The decision processor of the DS-SS receiver depicted in Figure 2.1 has the task

of resolving between the hypotheses given by equation (2.7). This task will be

accomplished using the test statistics Y.. The decision processor2 can be implemented in

various schemes based on the likelihood ratio of equation (2.8).

In this chapter, we will study three decision schemes: a fixed sample size (FSS)

test scheme, a sequential probability ratio test (SPRT) scheme and a truncated SPRT

scheme. These schemes are previously studied in [Ref. 7] and [Ref. 10] for a single

search state cell basis to obtain the average test lengths for SPRT and TSPRT and

comparing them to that of the FSS test. The flow-graph technique presented in previous

chapter is applicable to the all decision schemes using a serial search algorithm, hence

can be adequately used to study some important design considerations in terms of the

performance parameters, namely the mean and the variance of the acquisition time.

B. FIXED SAMPLE SIZE SCHEME

In a fixed sample size (FSS) decision scheme, the length of integration is fixed and

a decision is made based on the resulting test statistics, Y.. If the integration length is

taken as from t = 0 to t = MT,, the test can be described by

2 The decision processor design methods discussed in this chapter are adapted from [Ref. 7].
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AMy.) 7 " say H, (3.1)

) < say Ho

where r is the threshold. Since the likelihood ratio of equation (2.8) is a monotonically

increasing function of the variable y, equivalently the test can be written as

Y > Zt7 = A (,r) say H,

< :/: A)'(7) say H0

where A,' ( is the inverse function of Aj(.) of equation (2.8).

The cumulative distribution function (cdf) of Y, can be written in terms of the

Marcum Q function as

Fr(y1 ) = P(Y,eyn) = 1 - T2'. 2) Y, y 0 (3.3)

where the Q function is defined as [Ref. I I]

Q(C, ) = fx e -÷z2 1Co2)I(Ix) dx. (3.4)

An iterative algorithm for calculating the Q function can be found in [Ref. 12].

26



1. Design of Decision Parameters

Using equation (3.3) we can write the false alarm and the miss probabilities

for the FSS test as

P M'O T/

S 2 2
1 6N (3.5)

2M I 
2 j

From these equations, the values of r' and M can be obtained by iteratively solving

the equations simultaneously, such that Pf, !5 a and P,,, < 1 - 0, where a and 0 are

the desired false alarm and detection probabilities respectively.

The nominal worst case values of (X,./U2) are derived in Chapter II by equation

(2.13) and repeated below.

- n(SNR)(1-lyIlA)2  X ",--' under H,

2U (3.6)

2--n2 =SNR --- '° under H0
2U2

Considering the structure of flow graph depicted in Figure 2.3 of Chapter II we

will need the (k/2U2) ratio for the case of I j+'y I = 1.5. Recall from equation (2.7)

that for I j+,y I < .5 we have the hypothesis H1 and for I j+ -y I 2.0 we have the

hypothesis HO. Therefore (XI/2a.2) ratio for I j +V I = 1.5, denoted by (X,,11 2/2, 2) can

be approximated by
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Xnl1 1k,, 2 X.,o
S= + -- 2 (3.7)2• 2 3 202 32

using a first order linear approximation.

2. Mean and Variance Analysis of The FSS Scheme

We are now ready to use the expressions derived for the mean and variance

of the acquisition time. Note that the required parameters are Pd, > 0, Pp = a, all the

time delays for initial tests are MT, and the time delays for coincidence tests can be

calculated using equation (2.21). Finally,

l XMI. 2  (3.8)
F2'

a. Optimal Choices of The Design Parameters

We have seen that specifying the desired false alarm and detection

probabilities suffices to design a FSS decision scheme. In previous studies these

parameters are forced to be arbitrarily chosen obeying the intuition that a should be

reasonably close to zero while f should be reasonably close to unity. Knowledge of the

mean and the variance of the resulting acquisition time provides us a means of optimal

selection of these parameters with respect to these performance parameters.

Unfortunately, equation (3.5) depicts that a and # are related with the

design parameters, the sample size and the threshold in terms of Marcum Q function.

The values of interest does not allow us to make the well known exponential
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approximations of the Marcum Q function, hence we have to depend on the numerical

results rather than a more desirable rigorous analytical analysis.

Our argument will now continue with the illustration of some examples.

As the first example we employ a FSS, PN code serial search acquisition scheme with

an early terminatable coincidence detector. Using the notation of Chapter [1 we assume

y = .5, A = .5 for this system. The coincidence detector parameters are A = 4 and B

= 2. The design chip SNR = -10 dB and the amount of time elapsed for returning from

the FA states (penalty time) is set to be 5 bit periods.

Figures 3.1 and 3.2 show the graphs for normalized ITACQ and O&TACQ

versus various values of desired false alarm (ax) and detection (fl) probabilities for this

system respectively. The plots have the following common properties:

"* The rate of the change of the values of with a are much greater than the variations
due to f.

"* Both curves has a minimum point for a certain ot and # combinations.

The minimum 14TAcQ is 111.46 Tand occurs at ot=.06, (=.69, whereas

the minimum OTACQ is 6.0e3 T' and occurs at a = .06, # =.8.

Let us consider the case of minimum jLTAcQ and carry out a simple

comparison with the theoretical values computed in Section C of Chapter II. The fixed

sample size, Mf. calculated by equation (3.5) for these values of a and # is 70, and

recall from equation (2.17) that 70 bit periods is the lowest mean time to acquire if it

were possible to achieve definite detection and no false alarm hypothesis with this sample

size value. On the other hand, the real values are Pal= 0.6967, Pd2= 0.2846, PA= 0.06,
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the coincidence test detection and false alarm probabilities from equation (2.22) are P, 1 =

0.9138, Pd2 = 0.3213 and P,,= 0.0199. The coincidence detector time delays from

equation (2.21) are tdl'= 189.5, td2'=234.9 and t,'=220.8 chip periods. The effective

sample size per state, i.e., M.'(1), for Ho states can be calculated using equation (2.30)

to be 89.36. Therefore, considering a P,,=0.06, the system would have reached

acquisition on the average 89.36 bit periods if it were quaranteed to acquire as soon as

it reaches a state under H,. However, the actual mean acquisition time came out to be

111.46 bit periods. H1 states and additional sweeps of the uncertainty region prolonged

the mean acquisition time to 111.46, only 22.1 bit periods. As we remarked earlier the

states under Ho dominates the resulting mean and variance of the acquisition time. This

simple example and the greater rate of change with respect to a verifies this hypothesis.

Surprisingly, we observe that the desired detection probability, 0 which

minimizes either the mean or the variance of the acquisition time, takes moderate values,

opposing the intuitive thought that it should be as close to unity as possible. We will

explain this phenomenon by stressing the importance of the sample size per decision. We

have seen in Section C of Chapter II that the average acquisition time heavily depend on

the sample size. Therefore, it should be kept as low as possible to minimize the

acquisition time. For a fixed dwell acquisition scheme such as FSS, the sample size per

decision is fixed a priori and we denote it M•,. The plot of the MS versus a and f is

given in Figure 3.3.
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Figure 3.3 The fixed sample size (Mfss) versus various a and combinations.

This graph has an interesting property that along the main diagonal the

values are "almost" symmetrical, that is, for a fixed oa, MA,, increases exponentially with

increasing 5, and for a fixed f decreasing a has "almost" the same effect. In fact the rate

of change with respect to # is slightly greater. Choosing a small at and large#5, requires

a large M., which in turn results in a large mean and variance of the acquisition time.

Otherwise, false alarms and additional sweeps of the uncertainty region increase the same

parameters. Therefore, an optimum acquisition time can be achieved in terms of the

design parameters a and f. Since the states under Ho bear far more weight than the states

under H, and false alarms are costly, minimal a turns out to be a small value (close to

zero), while selecting a large ft increases the M,~ excessively with respect to its

contribution, minimal f takes moderate values.
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The second example is chosen to illustrate the potential benefits of using

a coincidence detector in the acquisition system. The only difference is that we have set

the values of A and B both to be zero, and therefore no coincidence detector is used. The

minimum value of the average acquisition time is now increased to 171.9877 T for the

values of ct=0.0046, 0=0.63. The minimum value of the variance is also increased to

13702 T 2 for a = 0.0051, f = 0.79.

Our argument for the design parameters completely fit in this system as

well. Note that minimal a turns out to be approximately 10 times smaller than the

previous example, because coincidence detector by design decreases the effective false

alarm probability. We will investigate this matter further in detail.

Our discussion so far targeted the two performance parameters, i.e., the

mean and the variance of the acquisition time separately. We have seen from the

examples that both parameters are minimized by close but distinct choices of design

parameters a and 0 and yet no suggestion has been made which pair should be used in

the design. Before further discussion, we summarize our results for the design examples

in Table 3.1.

The Tchebycheff Inequaliy [Ref. 13] is a well known theorem of

probability theory and is a measure of the concentration of an RV near its mean q and

its variance o9. It can be formulated as

P{ Ix-I>} X C ,V E > 0. (3.9)
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TABLE 3.1 The system values for the design examples of FSS test.

Minimum uTACQ Parameters Minimum O2TAQ Parameters

(0) TACQ V2TACQ (CIA ILTACQ Gr2iTACQ

System (0.06, (0.06,
with 0.69) 111.46 7014.0 0.80) 119.08 6002.0

ETCD ___ ______

System (0.0046, (0.0051,
with 0.63) 171.99 16572.0 0.79) 183.63 13702.0

No CD

The proof of this theorem is simple and can be found in [Ref. 13]. Note

that even the bound in (3.9) is shown to be not so tight for specific densities, i.e., normal

densities, we could still use it conceptually to find a criteria for choosing optimal design

parameters.

We remark that the probability density function of the acquisition time

be positive definite, that is TAcQ > 0. We are interested in finding an upper bound for

the probability for the cases TAcQ is greater than ILTACQ up to several order of magnitude.

Let T. denote the maximum "acceptable" acquisition time for a system of this nature.

Setting c = T. - #zTAcg in (3.9), we obtain

2

P~tAcQŽT,,,•} <- { - •sTAI T}TACQ (3.10)
(T.~ IACQ)

To clarify a possible ambiguity, the reader should note that we are not

actually interested in determining the probability that the system will reach acquisition
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in less than T,, seconds, although equation (3.10) depicts a pessimistic and quite

possibly a loose bound for this probability. The usefulness of the Thebycheff's Inequalty

comes from the fact that it can be used for any random variable if the first and second

order statistics are known. Therefore, it can be adequately used for our case, to make

an even comparison between the multiple choices with which we are confronted and to

help us to narrow our attention to a unified direction.

The right-most expression in (3.10) is the bound for the upper tail

probability which we want to minimize. To be consistent with the notation we have been

using, we will denote the parameters that minimizes the right-most expression using an

asterisk (*) following the relevant parameter to demonstrate that the parameter is

"optimal" in this context. The numerical results for various T,• suggests the &" and 03

combinations lay between the cases of minimum ITAcQ and minimum o2TAcQ. In fact it

is easy to see from equation (3.10) that for the case of T, i. ITAcQ minimum '9 TAQ

choices minimize the right-most expression in (3.10). Figure 3.4 depicts this behavior

of a* and 6* graphically for the design examples of this section from Table 3.1. System

1 corresponds to the design example which uses an early terminatable coincidence

detector, whereas system 2 is the example without the coincidence detector in this figure.

The x - axis assumes various values of T,,,/T normalized by the sequence length N.

Note that a* values remain essentially unchanged for the entire range, which verifies our

earlier observation about the dominance of the Ho states. Figure 3.5 shows the

corresponding values of the normalized /*TACQ and o'"TAcQ of the same examples for the

same range of T, INT. Note that as T. increases I*TAcQ values increase and a2 "TAcQ
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Figure 3.4 Optimal a and f values with respect to the Thychebyceff's Inequality.
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Figure 3.5 Optimal performance parameters with respect to the Thychebycheff's
Inequality.
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values decrease, but the change in either of these is not so drastical. This is because these

parameters are essentially determined by &', which remains constant for the whole range.

Had the value of T, been specified by the system designer, we could

use that value in our equations for further discussion. Since we do not have a

predetermined value, we will narrow our focus to the minimum o2TAcQ choices for the

remainder of this thesis. We will also present the results for minimum #,rcQ choices

where appropriate.

b. The Fffedts of The Penalty Time

The penalty time for our system was defined as the amount of bit

intervals elapsed for returning from the FA state. It is essentially determined by the

external tracking circuit as a measure of the quality of the scheme. Recall from Chapter

1I that the penalty time was expressed as cNT, where c denoted the number of data bits,

N was the sequence length and T, was the chip period. Using the flow graph technique

and selecting the minimum variance choices we have calculated &*, 0%, and normalized

ILTACQ and 2 "TACQ while the c parameter is varied from 1 bit period to 1000 bit periods.

Figure 3.6 depicts the results for the system of example 1 from Table 3.1.

Increased penalty time prolonged the average acquisition time and

increased the variance as naturally expected. As far as the design parameters are

concerned, we see that #* is not affected, since the penalty only occurs at Ho states. The

a* is not affected very much either, if the variation of the penalty time remains in close

vicinity of its design value. The system, however, requires a much lower design a to

compensate, for an excessively large penalty time.
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Figure 3.6 The effects of penalty time on the design parameters.

Using the design values shown in Figure 3.6, we can now examine the

system behavior for the cases where actual penalty time differs than specified in the

design. We have considered three design values of the penalty time, where c = 5, 50 and

500 bit periods. The system is constructed using the corresponding a and 0 for each case

from Figure (3.6). The actual penalty time is again varied from 1 to 1000 bit periods.

The variation of OTACQ with the changing penalty time is given in Figure 3.7. We saw

that if the system spent more time than specified in the design to recover from a false

alarm state, this would degrade the system performance. This degradation would effect

the system more severely, especially when the specified penalty time is small and actual

penalty takes considerably longer time. Consider our example, the system designed using

c = 5, results in a variance value 1.95 times higher than the system designed using c =
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50 when the actual penalty time (cA) is 50 bit periods, whereas the second system has

only 1.2 times greater variance value than the first system at cA = 5 and the degradation

gets worse as CA increases. Although, we have shown here some extreme cases, this

behavior of the system is still valid for a smaller scale of the change in the penalty time.

Therefore, we can say that if some uncertainty exists about the penalty time, it is safer

to design the system using highest possible c value.

LEGEND o=c=5, x=c=50. *=c=500107•

106

I- -

104

10,

10o 101 102 103

ACTUAL PENALlY TIME

Figure 3.7 The variation of a
2TAcQ with the actual penalty time.

c. The Channel Mismatch Problem

We will now examine a more serious and practically important design

problem of the acquisition system. Recall from equation (2.11) that the chip signal to

noise ratio (SNR) of the incoming signal had to be specified prior to designing the
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system. In practice, for the receiver's site there is no way of knowing the exact SNR

other than obtaining this value by field measurements and this effective SNR value may

be different than specifications for a variety of reasons, i.e., the receiver's location,

channel medium, fading.

Using equation (2.11) we can show that the bit signal to noise ratio,

denoted by SNRb can be expressed as SNRb= (Ao2 T / 2No) = N SNR. Here N is the

sequence length and T is the bit period. So far, for our examples we fixed the per-chip

SNR as -10 dB, which corresponds to an SNRb of 20 dB. Table 3.2 depicts various design

SNR values and the resulting /&'TAcQ and O2*TACQ using minimum variance choices for

the system of example 1.

We will define the term "channel mismatch" as the response of the

receiver to the incoming signals that have different SNR than specified in the initial

design. Naturally, under occurrence of such an event some performance degradation

should be expected. This degradation will happen for the stronger signals, as well as for

the weaker signals, because lower design SNR will yield a lower threshold which can

result an increase in the number of false alarms for stronger signals.

Using the flow graph technique we present the variations of resulting

mean and the variance of the acquisition time with respect to the effective SNR of the

incoming signal. The system of example 1 is used for three separate design SNR values

(-13, -10 and -3 dB) from Table 3.2. The effective SNR is changed from -20 dB to 0 dB

for all three cases and the plots for I&TAcQ and O2TAcQ are given in Figures 3.8 and 3.9

respectively.
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TABLE 3.2 The system values for various design SNR for the acquisition system.

SNR (dB) SNRb(dB) a "•0 #TACQ o2"TACQ
-20.0 10.0 0.12 0.75 927.0272 4.2269e5

0

-13.0 17.0 0.07 0.79 219.1580 2.0658e4

-10.0 20.0 0.06 0.80 119.0972 6.0020e3

- 3.0 27.0 0.04 0.81 39.9832 4.4971e2

0.0 30.0 0.03 0.81 20.4277 1.6984e2

For all of the three cases, we can say that the degradation caused by the

stronger signals are much less than by weaker signals. For example; for the case of

design SMR = -10 dB, a 10 dB increase in the effective SNR increases 1UTAcQ by a factor

of 3, whereas a -10 dB decrease increase the same parameter by a factor of 100. Also,

one can observe that in the close vicinity of the design SMR slightly stronger signals yield

a better performance.

Therefore, if the system designer has some uncertainty about what the

received SNR would be, it is better to design the system using the lowest possible SNR

to counterbalance the channel mismatch problem.

3. The Coincidence Detector Parameters

In Chapter II we have proposed a majority logic verification scheme for our

system to counter balance the effects of costly false alarms. Briefly, the system will

enforce A or less additional tests in case of an H, decision to verify the correctness. If

B of the additional tests are in favor of the original decision the system decides H,. We

also assumed that a counter is available and the test can be early terminatable once B
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Figure 3.9 The variation of O&TAC with the effective per-chip SNR.
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favorable tests are accumulated or there is no chance that B favorable tests can be

obtainable. In this section we will investigate what good choices of the parameters A and

B should be, with the help of the flow graph technique.

We have calculated minimum o2TAcQ and corresponding a* and #* values for

several coincidence detector (CD) parameter pairs (AB) for the system of example 1,

both for with and without early termination feature. We present the results in Figure 3.10

graphically.

The best case for the early terminatable coincidence detector (ETCD) occurs

for the (AB) pair (5,3) resulting a minimum variance of 5715.8 72 with a* = .09 and

fl" = .82 and the corresponding ITACQ = 117.07 T. This minimum variance value is the

overall best case we have achieved for the system with SNR=-10 dB so far. For the non-

early terminatable coincidence detector (NETCD) we obtain the minimum O2 TACQ =

6486.4 at (4,2) with a* = 0.056 and l* = 0.8, and the corresponding $&TACQ= 1 2 3 .9 4 T.

We can remark that choices of optimal design parameters does not change

very much regarding to the coincidence detection scheme. One can also see that for this

minimum variance cases the improvement achieved using an early terminatable

coincidence detector is approximately 5 % in the mean 12 % in the variance.

Although we show only a portion of the results, we have also studied the

cases of 7 :A :59 and the results are omitted, because none beats the minimum choices

presented above. In fact, it is logical to conclude that choosing A too large is

unacceptable for both schemes, although using a ETCD increases the range a little.
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Figure 3.10 Minimum O2TQ and &, * versus various coincidence detector
parameters.

From Figure 3.10, we can conjecture that once A is fixed the optimal choice

of B is around LA/2J. We can qualitatively verify this hypothesis by the following

argument. Recall from Chapter ]I that the coincidence detection or false alarm probability

is given by the cumulative binomial distribution of the form

P, = P(B< X <A) = I ' pjI(l-py- (3.11)
J-B

where the random variable X represents the event that an acquisition decision (either

genuine or falsely ) is made and p denotes the detection or false alarm probability for a

single test. This distribution has the mean pA and the variance p(1-p)A. The value of P,

equals to unity for B=0 regardless of the value of p. Considering (3.11) one can see that
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for a fixed A, a small p, i.e., a typical false alarm probability, results in a small mean

and variance, therefore, P, decreases rapidly with the increasing B. On the other hand

a large p, i.e., a typical detection probability, results a large mean (close to A) and

variance, therefore, rapid deteoration in P, occurs for large values of B. The system

does not know in advance whether an initial H, decision will result in FA or A CQ state,

therefore, uses the same CD parameters for both cases. We want a large B to pull down

the P, as low as possible, while a small B will make Pd as high as possible. Therefore

an optimum B exists in the interval [0 A]. Considering all the other factors effecting the

resulting STACQ and a9 TACQ, it happens to be around LA/2J.

4. Simulation Results

Our study on the FSS serial search acquisition scheme was based on

approximations and analytical formulations. In this section we present simulation results

for some particular cases to verify the validity of our assumptions and analyses.

We have used an m-sequence of length 1023 with the primitive generator

polynomial 1 + x2 + x5 + x6 + x'0 . The value of y used for the design is 0.5. The

update fraction, A, of the local m-sequence is set to be 1/2, half the chip period. The

initial state a priori distribution is assumed to be uniform. The early terminatable

coincidence detector parameters are taken as A =4 and B=2.

The simulations are performed using the three different per-chip design SNR

values from Table 3.2 (-13dB,-1OdB and -3dB) for 1000 runs. The sample and theoretical

values of uTAcQ and oaTAcQ are given in Table 3.3.
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TABLE 3.3 The simulation results for various per-chip SNR.

SNR (dB) Sample Theoretical Sample Theoretical
ISTACQ j TACQ U &TACQ 02TACQ

-13.0 217.10 219.16 19212.0 20658.0

-10.0 116.33 119.09 5494.6 6002.0

-3.0 36.82 39.98 574.7 449.7

Finally, we present the histogram for the case of per-chip SNR = -10 dB to

give an idea about the shape of the probability distribution function frcq(tc.) in Figure

3.11.
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Figure 3.11 Histogram for the simulation of the FSS scheme.
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C. SEQUENTIAL AND TRUNCATED SEQUENTIAL PROBABIrTY RATIO

TESTS

The sequential probability ratio test (SPRI) for the acquisition scheme of Chapter

II, is obtained by testing the likelihood ratio of (2.8) against two thresholds for

n =1,2,3... until one of the thresholds is exceeded. The length of the integration increases

by one chip each time n increases by one. The resolvement between the hypotheses Ho

and H, is achieved by checking which threshold value is reached first. The test can be

written as

[ A say H, (3.12)

SPRT: A.(y,) < B say Ho
otherwise, continue to next n

Note that Yn and Y,, are not independent and the likelihood ratio Aj(yj) can not

be written as the sum of independent random variables. However, Type I error (false

alarm probability) and Type II error (miss probability) can still be related through Wald's

inequalities[Ref. 14],

A and B> 2 , (3.13)ae 1-ae

where a and fm (= 1-0) are the resulting false-alarm and miss probabilities, respectively.

If the excess over the boundary is small when the test terminates, which is the case when

the average test length is large, the inequalities in (3.13) can be approximated by

equalities. Since 1-8. < I and l-a< 1, we can write
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< and < B (3.14)
A

which is useful when strict upper bounds on the errors are desired. These bounds are

tight when the errors and the signal-to-noise ratio are small.

Using the monotonicity of the likelihood ratio, the test in (3.12) can be written in

a more practical form for real time implementations, as

i : A(n) = Aj(A) say H,

yn r B(n) =A'(B) say H0  (3.15)

otherwise, continue to next n

where the thresholds can be precomputed as functions of n.

The SPRT has been shown to be optimum, in the sense of minimizing the average

test length under Ho and H,, only when the samples are i.i.d.[Ref. 6]. But for our

situation the samples are non-i.i.d. and no uptimality has been established. However, we

expect that the performance is still good and much better than the FSS test.

The SPRT test has a drawback that for certain PN sequence phase disparities, it

may take an excessiely long time to resolve between the two hypotheses. Such an

incident is especially likely when the initial phase difference between the two PN

sequences fall in the state between Ho and H1 as shown in (2.7). To avoid a lengthy test,

a truncated SPRT (TSPRT) test was proposed in [Ref 7], which imposed an upper bound

on the test length. The test is described by
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J ! A say H,
if n!A, AJ(y ) A say Ho

TSPRT: otherwise, continue (3.16)

if n=, A.(y,) = A,(y) < say H,

The test is truncated at n = A and converted to a FSS test if it has not terminated

before. Again using the monotonicity of the likelihood ratio function the test can be

written as

2 A(n) - A.'(A) say H,

if n!-fi, y . ^(n) - A,'(6) say Ho

TSPRT: otherwise, continue (3.17)

> A•1(•) say H1
if n=fi, y,, aA M syH

< A;'(f) say Ho

1. Design Of Decision Processors

The thresholds A and B for the SPRT test can be calculated using

A = and B = (3.18)

From (3.15), one can see that the resulting false alarm and miss probabilities

are Pf. < I/A = a and P.,,, < B = ft..

To devise thresholds for the TSPRT, we will split the test into two pans.

Consider that the test consists of a SPRT with thresholds A, , and errors aot,, ft., and
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a FSS test with sample size i, threshold ; and errors a., #*. It was shown in [Ref. 7]

that the errors of the TSPRT (3.17) were bounded by

a•, : C,•, + C,, (3.19)

Therefore, to obtain a,,, : a and 0.,, : 0., we can split these errors into

the sums of the errors due to the SPRT and the errors due to the FSS test. Specifically,

we let

of = , + aM = pei + (1-pda, (3.20)

S- + o + 0 (3.20)

where po andp, are constants in [0,1). By setting a%,, = pda and ftp, = pjft=, we can

design the thresholds A and b according to (3.18). Similarly letting a*= (1-p1 )a and

•S= (l-p1)(t, h and ; can be obtained using (3.5). Note that if po=p,=O the TSPRT

becomes an FSS test, while setting both parameters to unity converts the test a pure

SPRT. Hence for values in between, the TSPRT can be considered a mixture of SPRT

and FSS test.

2. Mean and Variance Analysis of The TSPRT Scheme

It was shown in [Ref. 7] that a properly designed TSPRT was superior to the

FSS test in the average sample number (ASN) for a single search state. It was also found

that TSPRT and SPRT performed very close. For the remainder of this chapter we will

focus our attention to the TSPRT and make an overall acquisition system analysis using

the flow-graph technique.
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The system model depicted in Section B of Chapter II remains the same, only

the decision processor is replaced with a TSPRT scheme. However, the time delays

associated with each state are now random variables instead of constants as were in the

FSS scheme. Therefore we will use the statistical averages, namely EftJ, Eft,2), E(t,/)

and Eft/2) in place of the constant time delays of the FSS test, to obtain I'TAcQ and o2TAcQ

for this system. Recalling the equations from Chapter U and using the same notation and

symmetry conditions, the required parameters for the analysis are

E(td,) = ASN_1.5 .T = ASN,.. Tl,
E(td2) = ASNo.,.T, 7- ASNo. .T•,

.6) = ASN ..20 . = ASNM .3.21,

E(tJ,) = (VSN,.5+[ASN, 5 ]2).Tc2, (3.21)

t22

E~td2) = ( VSNo.5 +[ASNo.V]). Tf ,

E(t•) = (VSN2.o+AS2.J2). T

where ASN denotes the "average sample number", while VSN stands for "variance of

the sample number". The delays associated with the coincidence detector are

E(t,) = c,.E(t,), (3.22)

E(t1 2) = C .E(ti)

where c, is a known constant(see equation (2.21)). The values of ASN, VSN and all the

detection and false alarm probabilities can be found using simulation techniques described

in [Ref. 7].
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a. Optimal Choices of Design Pwwneters

For the TSPRT test we followed a similar approach to that of the FSS

scheme. However in this case we do not have closed form expressions, therefore, we

have to depend solely on the simulation results.

Specifying the desired false-alarm and detection probabilities suffices to

design a TSPRT processor as described above. We will be looking for the two design

parameters a* and (" which minimize the variance of the acquisition time.

We again consider the acquisition scheme depicted in example I of

Section B. The decision processor is replaced with a TSPRT scheme and a m-sequence

with period N= 1023 is used as the PN sequence. The mixture rates are taken as Po =

p, = 0.5. The simulations are executed for various a, P pairs, where a E {0.001, 0.01,

0.05, 0.1, 0.15, 0.2} and f E {0.5, 0.6, 0.7, 0.8, 0.9}. We have also considered

several coincidence detector parameters A and B E [0,8].

For all the cases, all of the actual Pd values came out to be slightly

greater than f's, while all the actual Pf values were slightly less than a's, which

indicated that the system setup and approximations worked well.

Among all the cases investigated, the variance is minimized by the pair

(c*=0.05, #*=0.6) with the coincidence detector parameters A=5 and B=2. All the

relevant parameters associated with these design parameters are given in Table 3.4.

The notable improvement of the TSPRT over the FSS scheme can be

clearly seen from these results. Recalling the best case of FSS scheme, the variance of

the acquisition time is decreased from 5715.8 T2 to 2461.4 V"2, (approximately 57 %
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TABLE 3.4 The results of the TSPRT scheme.

A = 5 B =2 E(tj)= 73.4800 T, E(tt,2) = 6121.0 Te2

SNR = -10 dB
S= A = 0.5 E(t12) = 63.1390 To E(ta2) = 4751.0 T'2

ot= 0.05/3"=0.6
C= 19E~ = 56.1900 T, E(t•2) = 3720.2 T'2

PZTAcQ = 72.1909 T

V2TACQ = 2461.4 '2

PdI = 0.7660 E(tj/) = 190.40 T, E(td/2) = 41096 T'2

Pd2 = 0.0840 E(t2/) = 267.15 T, E(td2) = 85057 T'2

Pf,= 0.0288 E(tf) = 230.51 T, E(t2) = 62609 T'2

decrease), while the mean acquisition time is also improved by approximately 38.3 %

for the same design parameters. We remark that this improvement is a result of

decreasing the average sample size per state, while keeping the actual probability of

detection and probability of false alarm within reasonable values. Note that the actual Pd

is greater than f and the actual Pf, is less than a, which is usually the case, because the

system is designed on a nominal worst case basis.

The minimum ISTAcQ for the design example is 70.1626 T and the

corresponding O2TACQ= 2814.3 7T. These values occur for the (cj) pair (0.05,0.5). As

we can see that we still have a different set of parameters for minimum average

acquisition time choices as we had for the FSS scheme. But the values are somewhat

closer for the TSPRT so that our argument for selection of the design parameters using

the Thebycheff's Inequtiy holds even more confidently for the TSPRT scheme.
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As one can see, we again have a small a value and a moderate 6 value

to minimize either the mean or the variance of the acquisition time. The ASN and VSN

increases with the increasing a and decreasing ct (see Figure 3.12). Increasing a
excessively affects ASN and VSN, especially under Ho hypothesis. Since a very large

portion of the total states fall under Ho, this results a large mean and variance. Therefore,

the system is optimized on Ho by keeping a low to reduce the effects of false alarms, and

keeping a reasonably moderate, not to increase the ASN and VSN excessively.

To certify the improvement achieved using a TSPRT scheme over the

FSS scheme, the simulations are repeated for two other per-chip design SNR values (-13
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Figure 3.12 The variation of ASN and VSN with various a and a
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dB and -3 dB) with all the other parameters remained fixed. Figures 3.13 and 3.14

compare the mean and the variance of the acquisition time with the results given in Table

3.2 for the FSS scheme.
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Figure 3.13 The resulting IATACQ for various design SNR values.
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Figure 3.14 The resulting O2 TACQ for various design SNR values.
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b. The Channel Mismatch Problem

We examined the channel mismatch for the TSPRT scheme in a similar

fashion that we did for the FSS scheme. The system given in Table 3.4 is designed using

the three separate per-chip SNR values (-13, -10 and -3 dB) from Figures 3.13 and 3.14.

The effective SNR of the incoming signal is varied from -20 dB and 0 dB for all the three

cases and the plots for TTAcQ and a2TACQ are given in Figures 3.15 and 3.16 respectively.

We see a very similar picture to that of the FSS scheme. The degradation

caused by weaker signals are far greater than the stronger signals and this degradation

is more severe for higher design SNR (SNRd). As a numerical example, for SNR& = 0.1

the mean value is increased by a factor of 291 by a decrease of -10 dB in effective SNR,

while a 10 dB increase, elevates the same parameter by only a factor of 3.44. For all of

the three cases, slightly stronger signals in vicinity of the SNRd actually yield a slightly

better performance.

As a final observation, we can see that the aforementioned degradation

for the weaker signals seem to be slightly more severe for the TSPRT scheme than the

FSS scheme, i.e., the curves are steeper. This behavior is consistent, since the TSPRT

scheme is along the optimality boundary, therefore more sensitive to the external effects.

From all this discussion, we can once again conclude that if the system

designer has some uncertainty about what the received SNR would be, it is better to

design the system using lowest possible SN'R to counter balance the channel mismatch

problem. More will be said about the degradation in effective SNR hii the next chapter

when we examine the effects of fading on the performance.
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IV. PERFORMANCE IN THE FADING MULTIPATH CHANNEL

A. INTRODUCTION

The previous chapters have described the design and performance of the acquisition

systems operating over the classical AWGN channel.

In this chapter we consider the problem of the receiver performance for more

complex channels, namely, channels having randomly time-variant impulse responses.

This characterization serves as a model for signal transmission over many radio channels

such as shortwave ionospheric radio communication in the HF frequency band,

tropospheric scatter (beyond-the-horizon) radio communications in the UHF and SHF

bands, and ionospheric forward scatter in the VHF frequency band [Ref. 15]. The time-

variant impulse responses of these channels are a consequence of the constantly changing

physical characteristics of the media. As an example, the ions in the ionospheric layers

that reflects the signals are always in motion which appears to be random to the use- -f

the channel.

Although fading arises from variety of reasons, fading phenomena can often be

modeled as causing multipath distortion. That is, many fading conditions can be modeled

as causing several alternate transmission routes to arise between the transmitter and the

receiver. Since this multipath is a result of the time varying characteristic of the channel,

the nature of the multipath varies with time. That is, in addition to the transmission path

which the system designer considered, additional unplanned transmission path varying
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with time and appearing as random to the user of the channel are excited. The signals

arriving at the receiver through different paths interfere either constructively or

destructively to result in signal fading. Since this variations appear to be random, fading

is best described using statistical terms.

Fading is a widely studied area of the communication theory and more detailed

explanation about the topic can be found in existing literature.

Our intent for this chapter is to examine the effects of fading on our acquisition

receiver performance. Effect of fading on the very same system was previously studied

in [Ref. 10] for a single search state cell basis to examine the variation of the average

test length, the detection and the false alarm probabilities for the TSPRT scheme. We

will extend this study to the overall system basis using the flow-graph technique.

B. MATHEMATICAL MODEL

The fading multipath channel under consideration is characterized as flat and slow

fading channel. Flat in this context means that fading affects all frequency components

present in the transmitted signal in exactly the same manner as opposed to bandwidth-

selective channels. The received signal in such a case can be regarded as multiplied by

a random variable which accounts for the fading. The other characterization, slow means

that the channel variations (which give rise to the signal power fluctuations) are slower

than the lowest frequency component in the signal. Therefore, the received signal can

again be regarded as multiplied by a random variable, rather than by a fluctuating time

function which would be the case for fast fading channels.
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In the multipath approximation, the power in the stronger signal path for which the

system is intended to be designed, is called the direct component, while all the total

power in the remaining weaker paths is termed as the &ffuse component.

It has been shown in [Ref. 10] that for the assumed flat, slowly varying fading

channel, the received signal is effectively multiplied by a random coefficient 0 which

has a Ricean probability density function, given by

f*(O) = 20'(l +r)e -r-(1+÷Io(20ýrv4 ('•)), # >0 (4.1)

where r the ratio of the power in the direct component (s2) and the power in the diffused

component (2W2), with the constraint that s2+ 2a2 = 1. The parameters s, a' and hence

r are dependent on the nature of the channel. Note that for r = oo (or s2= 1 and a2 =0),

it corresponds to no fading. Also when r=O (or s2=0 and o'=0.5) we have Rayleigh

fading, of which the pdf is given by

f,(O) = 20e-1P, 0' >0. (4.2)

C. TEST STATISTICS DENSITY FUNCTION

Recall from Chapter II that the receiver's (Figure 2.1) test statistics is given by

equation (2.6). Assuming a slowly varying, flat fading multipath channel the resulting

test statistics can be found as follows. The received signal through the fading channel is

now given as
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r(0 = A0oa(t + iAT,)cos(wo,+O) + n() (4.3)

where 0 is the fading random variable with the pdf of (4.1) or (4.2). Note that since we

have assumed slowly varying fading channel, 0 does not change very much within one

data bit interval, therefore can be assumed constant during the test length. Referring to

the receiver structure the inphase and the quadrature components depicted in equation

(2.2) now become

Ax, #T - Sr:cosO + N,•
2 (4.4)
Ao

x,• = 2 OT Srsin° + N

where Nn and N,,,, are still defined by equation (2.3). As before, the test statistic for

determining the alignment is

Y#=Xi2 + 2 (4.5)
n q~n-

The conditional probability density function of y,, conditioned on 0, is non-central

Chi-squared, and given by

fY.I(Yn#O) = e - y >0 (4.6)•~ 22 a

where X = (Ao0 /4)T?,2Sn and 0n2 = nTNo /4.

It follows from the above equation that to determine the test statistic's density

function, the ' dependance has to be integrated out. Namely, the test statistics density

function is
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f,.o,.) fy= y 1 ft(O) d(4.7)

In the previous study [Ref. 10] this integral was carried out using the probability

density functions of equations (4.1) and (4.6). The resulting pdf of new test statistics

under fading conditions is repeated below.

1 +r -[(1 +r)(y /22r) +r(X./2qb)]1
f"Y)=2or.2[(1 +r) +X/2or eý (I +r) +X,/20r ( 4.8)

.i [2Vr(l +r)(yI/2a2b(XI,/2r)1

1 +r+X,/20r,

This result shows that the probability density function of y. is still non-central Chi-

squared. The density function is still the same form of equation (2.6) but the parameters

X. and a2 are replaced by new values,

rX =.1 *r'

T +,2 (4.9)
2' 2 1 + r +X./20(9

o, I+r

D. PERFORMANCE ANALYSIS TECHNIQUES

Since we have the precise description of the receiver's test statistic density function,

we might perform our ongoing analysis methods to examine the performance of the FSS

and TSPRT schemes under fading conditions. Note that for the FSS scheme we have

closed form expressions and we might perform the analysis analytically. But for the

TSPRT scheme we have to depend on simulation results.
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In the previous study [Ref. 10], the performance under fading conditions is

examined using a numerical integration technique to integrate out the / dependance from

the conditional density function. That technique required a number of simulations,

specifically 25 simulations for a single case (because the area under pdf is divided up to

25 intervals). In this thesis we will use a different, more direct simulation technique,

that is, we will design our receiver in the normal way without the fading and simulate

the effects of fading using the pdf in equation (4.8).

It is instructive to examine the specifics of the simulation technique to verify the

validity of the results. In the original simulation program the test was based on the

likelihood ratio of (2.8), so that for the SPRT part of TSPRT, i.e., n < h (see 3.16),

the test is conducted by

H0  H,

b=ln(A) < "'-" + n lo( (Y/ly')(X""lor) ) > a=ln(A) (4.10)b =n(B 2 In o ýYj2 Xnd2 < lnA> 2Unoq/v,,)(x On,) )
continue . continue

where A and b is calculated using (3.18) and (3.20).The test statistics yn was then

normalized by or2, i.e., a new random variable was introduced, z, = yIa1,2. With this

transformation, the test was written as
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H0  H1

b(n) = b + 1 1 X* in = 0 /~X /u)~>X-
b~n)= b X.' -kO __In_______4 d(n) =a + k,1 nX,O (4.11)I> < 2o.

cont. cont.

where the thresholds were now functions of n, because 0,,-aI,) depend on n (see

equations (2.12) and (2.13)). All (X.,/hi•) values in equation (4.11) were calculated using

the nominal worst case values of equation (2.13). The probability density function of the

new test statistics z, was given as
1 -(z,•X,)r2 X.

fz.(Z,) = X, ) /2e0 J /(i 7 (4.12)

where X• = X..1 /,I 2 under H, and = kX,0/q.2 under Ho. The simulation program

generates z, with this statistics, using the actual values (X.,i/or. 2) given by equations (2.10)

and (2.12), then calculates the value of the middle expression in (4.11) and compares

the resulting value with the two thresholds a (n) and b (n) to resolve between the

hypotheses.

We have seen that the fading effects the statistics of y. in the manner depicted in

(4.9). Using the transformation z, = y,/aI2 this changes the probability density function

ofz. as

(o ( •/I ,,)z, I (o,,/o,)2) (4.13)
z. (z) 2( ,/r2 r

where the new parameters can be written in terms of the older ones as
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-r
2 2 1 *r'

a,,r ~ (4.14)

1+r+Xk/22)2
Na' I+r

Once r is fixed, we can use equations (4.13) and (4.14) to generate the test

statistics, therefore, the effects of fading on the TSPRT scheme can be examined for

various fading conditions.

The FSS scheme under fading conditions is easier to examine. We simply use the

cumulative distribution function of y, corresponding to (4.8) to calculate the detection and

false alarm probabilities. The cumulative distribution function of y, can be written as

Fy.(y) = 1 - 1 r(+X,,/2) (1 +r)(ye./) (4.15)
,I1 + r + X,/20r I + r + X./201

where the Q function is defined as equation (3.4).

E. RECEIVER PERFORMANCE WITH FADING

1. Numerical Results

We now use the flow graph technique to examine the variations of the

performance parameters of the acquisition time, #Trcq and v2TAcq for various fading

conditions. The analysis for TSPRT and FSS schemes will follow the steps outlined in

Chapter MI, Subsection C.2. and B.2. respectively. We first present the numerical results

for the best case (minimum variance) design examples of Chapter MI for SNR = -10
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dB. The system for TSPRT has the parameters (a= 0.05, 0=0.6, A=5, B=2) and the

FSS system has the parameters (a=0.09 , 6=0.82, A=5, B=3). In these figures the

fading conditions is varied for r E {0.0, 0.5, 1.0, 2.0, 5.0, 10.0, 20.0, 50.0, 100.0) for

both of the systems.

Figures 4.1 and 4.2 show the variation of the prcQ and o2TACQ for the fading

conditions respectively. Referring to these figures, we can say that severe fading, i.e.,

r < 5 cause a considerable performance degradation for both of the schemes. This

degradation is unavoidable if additional counter measures were not taken to reduce the

effects of fading. But we can still see that TSPRT performs considerably better than FSS

scheme even under severe fading conditions. Note also that as r increases both curves

asymptotically approach to their non-fading values, which indicates that the system setup

and analysis technique works well.

200 - LEGEND: o=TSPRT *=FSS

150

S100

50
0 10 20 30 40 50 60 70 80 90 100

r (FADING VARIABLE)

-200 LEGEND: o=TSPRT *=FSS

100

50. P 1 -

0 0.5 1 1.5 2 2ý5 3 3.5 4 4.5 5

r (FADING VAftLBLE)

Figure 4.1 The variation of /Tcq under fading conditions.
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Figure 4.2 The variation of O2TAcQ under fading conditions.

2. Fading as a "Channel Mismatch" Problem

We have examined the channel mismatch problem for both of the FSS and

TSPRT acquisition schemes in the previous chapter. We have shown that incoming

signals that have different strength than predicted by the system designer caused

performance degradation. Signals coming through fading multipath channel can be

regarded as a specific case of channel mismatch.

Considering equation (4.9), one can see that under fading conditions, the

reductions to the effective SNR would be due to a decrease in the mean of Gaussian

quadrature components of the resulting Chi-squared test statistics (y,) and an increase

to the noise. The parameter k is decreased by a factor of [r / (1 + r)] and oa2 is
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increased by a factor of ( I + [(1X. I2ar) / (I + r)] ). Since all our formulations are

based on the ratio (X0/or.), we prefer to work on the equivalent normalized test statistics

z, (see (4.12)). With the help of equation (4.14), we can see that fading changes the

parameters of z, as

X,1 r wider H,2 -=1

under HI2 2 1 +rork,o ,,or,

l.l+ (X.,,) r under Ho2 1+rOr,, 1,, (4.16)

1 0 1 + (XdI/b) under HO
1+r

Note that, since X,> X•,, fading will effect our decision scheme differently under each

of the two hypotheses.

Consider first the case under Ho. Since it represents a non-synchronization

condition, ideally, i.e., complete random sequences were used, we should only detect

noise after the correlation process in the receiver. However, since we are using a partial

correlation receiver and an m-sequence, we treat the resulting small correlation value as

if it were a "signal" under Ho. Our design assumes that X, = (0,0 /q 2 ) is upper

bounded by per-chip SNR (see equation (2.13)), which is in this case 0.1, and fading

further reduces this value. Therefore, we expect actually a slight improvement on the

performance, but the slight increase in the noise variance counter effect the performance.
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Therefore, we can conclude that fading has no or little effect on the performance of the

acquisition scheme under Ho. This conclusion will later be confirmed by numerical

results.

Under H1, we see a completely different picture. In this case, we actually

need a signal to detect the acquisition condition, and the higher this signal value is the

better the performance. Unfortunately, fading affects this value adversely; it is decreased

by a factor of (r / (1 +r)). In addition to that, the noise variance (4.16) is increased in

much greater pace than under Ho (because k,, > X,,).

Our design approximates the parameter X, (= (k, /q 2 )) as nSNR(I - I y I A)'

(see equation (2.13)). Considering SNR(1- I y IA)2 as a constant, (X, I la,2) is proportional

to the sample size value n. Therefore the noise variance (4.16) is also increased with

increasing n for a fixed r. We expect that the effects of fading to be severe for H, under

these conditions.

The noncentrality parameter of the resulting test statistics is effectively

decreased and underlying noise variance is increased due to the fading under H1. Since

the incoming signal plus noise appears to have less signal component and more noise

component than no fading condition, the output of the correlator in the receiver tends to

be more "Ho like". Therefore, we expect a decrease in the effective probability of

detection.

Considering equation (4.16), one can see that the worse the fading is the less

the signal component and the more the noise, so that under the worst case (Rayleigh)

fading the we will have no signal component but a noise which the variance at its
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maximum. Since the noise variance also increases with increasing sample size for a fixed

r, the output of the correlator tends more and more to be in the extreme regions (either

Ho or H,) rather than in between, as the test length increases. The average sample size

(ASN) is therefore expected to be decreased for worse fading conditions, i.e., the TSPRT

will reach a decision earlier (not necessarily a correct one) because of the increased

variance of the noise due to fading conditions.

We now present the numerical results for TSPRT to validify our discussion.

Figures 4.3 and 4.4 depicts the variation of the aforementioned parameters under H, and

Ho for t =0.05 and # = 0.6, 0.8, 0.9 and 0.99. We can see that the parameters under

Ho, namely Pf and ASN 2.0 essentially remain unchanged under fading, while ASN0 5 and

more importantly Pd behaves in the way we expected. The main cause of the performance

degradation under fading is the degradation in the effective probability of detection. The

decrease in the ASNo.5 does not help, because the states under H, is just a small fraction

of the total states (4 out of 2046 in our case), therefore, the reduction contributes very

little to the overall average sample size per state and the resulting mean and the variance

of the acquisition time.

Since the channel mismatch mainly occurs for H, and decreases the actual

probability of detection, one corrective approach to reduce the effects of fading could be

taken by increasing design f, while keeping a the same. Since the actual Pd will also

increase, the system, therefore could satisfy a reasonable detection rate and perform

better at severe fading conditions. But the increase in f will also result in an increase in

the average sample size per state, therefore, the performance under no or less severe
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fading conditions have to be sacrificed. To illustrate this, we raised the f value of our

design example from 0.6 to 0.8,0.9 and 0.99. We rerun our simulation under the fading

conditions represented by r E {0 1 5 10 20}, for these values of fl, while keeping all the

other parameters constant. We present the results for MTAcQ and v'TACQ in Figures (4.5)

and (4.6) respectively.

LEGEND B:TA( o=0.6, +=0.8, x=0.9, 0=0.99

0.6-/

0.4

0 10 20 30 40 50 60 70 80 90 100

r (FADING VARIABLE)

0.1 LEGEND :BETA( o=0.6, +=0.8. x=0.9, *=0.99 -

a 0.05 -

0 - -t_ --

0 10 20 30 40 50 60 70 80 90 100

r (FADING VARIABLE)

Figure 4.3 The variation of actual Pd and actual P., for TSPRT scheme under fading.
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Figure 4.4 The variation of ASNo.5 and ASN 2.0 for TSPRT scheme under fading.
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Figure 4.5 The variation of JUTACQ under fading with various i.
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Figure 4.6 The variation of u2 TAcQ under fading with various (.
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V. CONCLUSIONS

In this thesis, we have studied noncoherent PN code acquisition systems in terms

of the mean and variance of the acquisition time in the classical AWGN channel and in

the presence of slowly varying Ricean fading. We considered a single dwell fixed

sample size (FSS) test decision scheme and a truncated sequential probability ratio test

(TSPRT) decision scheme. The mean (TA~cQ) and the variance (O2 TACQ ) of the

acquisition time was calculated using the flow-graph technique. We also assumed a

majority logic verification scheme (coincidence detector) with early termination feature

to reduce the effect of costly false alarms.

The design of either FSS or TSPRT scheme was based on specifying the desired

false alarm probability and the desired detection probability, denoted by a and 13,

respectively. We have seen that there is an optimum set of (ot,fl) combinations which

minimizes either ILTAcQ or o&TAco in the interval [0,1] x [0,1]. The optimum value of a,

denoted by &i* turned out to be very small, because the false alarms were costly and

majority of the uncertainty phases fell into the category of non-acquisition conditions. On

the other hand, the optimal f3, denoted by #3 took moderate values (i.e., between 0.6 -

0.8). Our results suggested that it was not correct to assume that the mean or the

variance of the acquisition time would be minimized with (1 - 13) -4 1.0, so that the

correct phase cell was detected in the first sweep of the uncertainty region. Selecting a

moderate f3 would result a much lower sample size per test than a high #, and this would
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result in reduced IATAcQ or O2TACQ even though several sweeps of the uncertainty region

might be required. The TSPRT scheme has been shown to perform much better than the

FSS scheme in terms of these performance parameters. Approximate improvement of 57

% in the O2TACQ and 38.3 % in the rTACQ were achieved by the TSPRT over the FSS

scheme.

The effects of various penalty times to our design considerations were examined

for the FSS scheme. We have seen that small variations in the penalty time did not

interfere much in the selection of design parameters, but an excessive increase in the

penalty time required a much lower ce, whereas # remained essentially the same. We also

saw that in case of uncertain penalty time, it was better to use the worst case value in the

design.

We have examined the coincidence detector parameters and the early termination

feature of the coincidence detector. We saw that it paid to employ a coincidence detection

scheme in the system, for it greatly reduced the mean and the variance of the acquisition

time. For the optimal selection of the parameters A and B, we found no simple solution,

because these parameters depended on various system values. Our numerical results on

the best cases suggested that A did not have to be so large, i.e., < 5, and once A was

fixed, optimum B turned out to be around LA/2J, depending on the other system

parameters. The early termination feature saved substantial time, especially if a large

B value (close to A) was selected. The improvement was greatly reduced for smaller B

values.
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We have examined the operating point characteristics of the systems around the

design per-chip SNR, what we called the channel mismtatch problem. Our results showed

that the performance degradation caused by weaker signals was far greater than the

degradation caused by stronger signals and this degradation was more severe for higher

design SNR values. Following this observation, we have concluded that if some

uncertainty existed over the effective channel SNR, it was safer to design the system

using the lowest possible SNR value to counterbalance the channel mismatch problem.

Finally, we have considered a slowly varying Ricean fading channel for both of the

schemes. The TSPRT again performed better than the FSS scheme under fading

conditions. We have seen that fading effectively reduced the actual detection probability

under the hypothesis H, while the parameters under the hypothesis Ho remained

essentially unaffected. We have also seen that we could improve the performance under

severe fading conditions by using a larger design 1.
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